Theoretical Explanation of the EPR Parameters of Tetragonal Ti³⁺ Centers in ZnSe and CdS_{0.75}Se_{0.25} Semiconductors

Xiao-Xuan Wu^{a,c,d}, Wen-Ling Feng^{b,c}, Qing Zhou^c, and Wen-Chen Zheng^{c,d}

^a Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P. R. China
 ^b Department of Applied Physics, Chongqing Institute of Technology, Chongqing 400050, P. R. China
 ^c Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
 ^d International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

The electron paramagnetic resonance (EPR) parameters (g factors g_{\parallel} , g_{\perp} and hyperfine structure constants A_{\parallel} , A_{\perp}) of the tetragonal Ti³⁺ centers in ZnSe and CdS_{0.75}Se_{0.25} semiconductors are calculated from high-order perturbation formulas based on the cluster approach. In these formulas, both

Reprint requests to X.-X. W.; E-mail: wxxdd@163.com

Z. Naturforsch. **61a**, 505 – 508 (2006); received June 2, 2006

the contribution from the spin-orbit coupling parameters of the central 3dⁿ ion and that of ligands are considered. The calculated results show reasonable agreement with the observed values. The defect structures of the tetragonal Ti³⁺ centers in both semiconductors caused by the static Jahn-Teller effect are suggested.

Key words: Crystal- and Ligand-Field Theory: Electron Paramagnetic Resonance: Local Lattice

Key words: Crystal- and Ligand-Field Theory; Electron Paramagnetic Resonance; Local Lattice Distortion; II-VI Semiconductors; Ti³⁺.